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Abstract

Element free Galerkin method (EFGM) is used to analyze a ¯exible translational joint. A moving constraint
condition is a major concern for the translational joint analysis. It is shown that the EFGM is well suited for an
analysis of ¯exible translational joint. Original shape function in the EFGM is modi®ed so that essential boundary

conditions are imposed by the same way as that of ®nite element method (FEM). The modi®ed shape function
possesses physical values at both ends of the element. The completeness of the modi®ed shape function is discussed.
Employing the present modi®ed shape function makes easy to implement the moving constraint condition.
Numerical examples for a static cantilever beam are presented for a comparison between the penalty method, the

Lagrange multiplier method and the present one. As second example, a large deformation problem is solved for a
comparison between the FEM and the EFGM. Finally, a simulation of ¯exible translational joint is shown. 7 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this paper, we consider a ¯exible translational joint as shown in Fig. 1. This system is modeled by
two ¯exible beams. Point B slides along the beam N and point D along a rigid ground. When the bodies
of translational joint are assumed to be rigid, a moving constraint condition of translational joint takes
a simple form (see, for example, Haug, 1989). In spite of potential demand for using ¯exible bodies,
very few studies have been done on ¯exible translational joint analysis. The translational joint
mechanism becomes a slider-crank mechanism when point B does not slide along the beam N. In such a
case or ¯exible multibody dynamics, the ®nite element method (FEM) has been used (Cardona and
Geradin, 1991; Escalona et al., 1998; Iura and Atluri, 1995; Simo and Vu-Quoc, 1986). When the FEM
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is used for a simulation of ¯exible translational joint, we might employ a ®nite element model as shown
in Fig. 2. The moving constraint condition asserts that point B of the beam M should lie on the i±j
element of the beam N. Once point B passes the node j, the constraint condition implies that point B
should lie on the j±k element of the beam N. A di�culty in the ®nite element analysis is to obtain an
exact time when point B passes the node j. Even if very ®ne time increments are used for a simulation, it
might be di�cult to obtain the exact passing time. When a meshless method is employed for a ¯exible
translational joint analysis, a displacement at an arbitrary point in the meshless element is presented by
just inserting position coordinates into a shape function. It is unnecessary to obtain the exact time when
point B passes the node j. Therefore, a constant time increment is available throughout a simulation.
This fact shows that the meshless method is well suited for satisfying the moving constraint condition.

In meshless methods, there exist a variety of formulation, such as di�use element method (Nayroles et
al., 1992), EFGM (Belytschko et al., 1994), reproducing kernel particle method (Liu et al., 1995), hp-
clouds method (Duarte and Oden, 1996), meshless local Petrov±Galerkin method (Atluri and Zhu,
1998), ®nite point method (Onate et al., 1996) and partition of unity (Melenk and Babuska, 1996).
Among the existing meshless methods, a di�culty is encountered in imposing essential boundary
conditions. This di�culty comes from the property of an approximation uh�x� for u�x�, expressed as

uh�xi � �
X
j

Nj�xi �uj 6�ui: �1�

For satisfying u�xi � � 0, it is not su�cient to impose ui � 0 at x � xi: Therefore, ui is called the nodal
value at x � xi: A variety of techniques have been proposed for satisfying essential boundary conditions
(Gunther and Liu, 1998; Kaljevic and Saigal, 1997; Krongauz and Belytschko, 1996; Lu et al., 1994;
Modaressi and Aubert, 1996). The existing methods for imposing essential boundary conditions are
more complicated than that of the FEM. It will be very e�ective to ®nd a meshless method in which
essential boundary conditions are imposed by the same way as that of the FEM.

After giving a brief explanation of the EFGM in Section 2, we propose a modi®ed shape function in
Section 3. The idea is to introduce a variable de®ned by

Fig. 1. Flexible translational joint.

Fig. 2. Finite element model for translational joint.
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Ui � uh�xi � �
X
j

Nj�xi �uj: �2�

The variable Ui denotes the physical value at x � xi by the de®nition. The nodal value ui is replaced by
the variable Ui in the modi®ed approximation. It is su�cient, therefore, for satisfying u�xi � � 0 to
impose Ui � 0 at x � xi: This fact implies that we can impose the essential boundary conditions by the
same way as that of the FEM. Since the resulting shape function di�ers from the original shape
function, we discuss the reproducing condition or completeness of the modi®ed shape function in
Section 3.

In multibody dynamics, a treatment of constraint conditions is a major concern. Joint constraints
appear in translational joint mechanism. In Section 4, using the joint constraints, we eliminate
dependent variables from the displacement functions. Equations of motion for the translational joint
mechanism are presented in Section 5 with the aid of Hamilton's principle. Numerical examples are
given in Section 6.

2. Element free Galerkin method

Based on the work of Belytschko et al. (1994), we brie¯y summarize the EFGM. The approximation
uh of a function u�x� is expressed as

uh�x� �
Xm
j

pj�x�aj�x� � pT�x�a�x�, �3�

where pj�x� are basis functions, aj�x� are their coe�cients and m is the number of terms in the basis. An
example of polynomial basis is written as

pT�x� �
�
1, x, x 2

� �m � 3�: �4�
The coe�cients aj�x� are obtained by minimizing the following function J:

J � 1

2

Xn
i

w�xÿ xi �
�
pT�xi �a�x� ÿ ui

�2
, �5�

where n is the number of points in the neighborhood of x for which a weighting function w�xÿ xi �6�0,
and ui is the nodal value of u at x � xi: The stationary of J in Eq. (5) with respect to a�x� leads to

a�x� � Aÿ1�x�B�x�u, �6�
where

A�x� �
Xn
i

w�xÿ xi �p�xi �pT�xi �, �7�

B�x� � �w�xÿ x1�p�x1�, w�xÿ x2 �p�x2�, . . . ,w�xÿ xn �p�xn��, �8�

uT � �u1, u2, . . . ,un �: �9�

M. Iura, J. Kanaizuka / International Journal of Solids and Structures 37 (2000) 5203±5217 5205



Note that uj does not denote the physical value at xj: Therefore, a variety of methods have been
proposed for imposing essential boundary conditions.

Substitution of Eq. (6) into Eq. (3) leads to

uh�x� � pT�x�Aÿ1�x�B�x�u � N�x�u, �10�
where the shape function N�x� is written as

N�x� � pT�x�Aÿ1�x�B�x�: �11�
A weighting function has been de®ned in terms of polynomial or exponential functions (Belytschko et
al., 1996). In this paper, the following weighting function is used:

w�di � �

8>><>>: 1ÿ 6

�
di
r

�2

�8
�
di
r

�3

ÿ3
�
di
r

�4

�diRr�,

0 �dirr�,
�12�

where di is de®ned as di � kxÿ xik, and r is the radius of the support for the weight function.

3. A modi®ed shape function

As described before, a di�culty in the meshless method is encountered in imposing essential boundary
conditions. In the case of ¯exible translational joint analysis, the essential boundary conditions are
imposed on the ends of beam. If a displacement function has physical values at the ends of beam, it
might be easy to satisfy the essential boundary conditions. In this paper, we propose a modi®ed shape
function in which both ends of beam possess physical values in stead of nodal values.

Let x1 and xn denote the coordinates at both ends of the element. The physical values at x1 and xn

are denoted by U1 andUn respectively. Then, by the de®nition, we have

N1�x1 �u1 � � � � �Nn�x1�un � U1,
N1�xn �u1 � � � � �Nn�xn�un � Un:

�13�

Solving Eq. (13) for u1 and un, we have�
u1
un

�
�
�
N1�x1� Nn�x1�
N1�xn� Nn�xn�

�ÿ1�
p1�x1�
pn�xn�

�
, �14�

where p1�x1� and pn�xn� are written as

p1�x1� � U1 ÿ
�
N2�x1�u2 � � � � �Nnÿ1�x1�unÿ1

	
,

pn�xn� � Un ÿ
�
N2�xn�u2 � � � � �Nnÿ1�xn�unÿ1

	
:

�15�

Substitution of Eq. (14) into Eq. (10) leads to

uh�x� � N��x�u�, u� � �U1, u2, . . . ,unÿ1, Un �: �16�
The modi®ed shape function N���N�1, . . . ,N�n�T is expressed by

N�1�x� �
�
Nn�xn�N1�x� ÿN1�xn �Nn�x�

	
=W �,
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N�j �x� � Nj �Mj�x�, �j � 2, . . . ,nÿ 1�,

N�n�x� �
�
N1�x1�Nn�x� ÿNn�x1 �N1�x�

	
=W �, �17�

where Mj and W � are de®ned as

Mj � 1

W �
�
N1�x�

�
Nn�x1�Nj�xn� ÿNn�xn�Nj�x1�

	�Nn�x�
�
N1�xn�Nj�x1� ÿN1�x1�Nj�xn �

	�
, �18�

W � � N1�x1�Nn�xn � ÿN1�xn�Nn�x1�: �19�

Since the modi®ed shape function is di�erent from the original one, a question about consistency might
be raised. Consistency conditions are closely related to the reproducing conditions or completeness
(Belytschko et al., 1996, 1998). In what follows, we shall discuss the reproducing conditions.

According to Belytschko et al. (1998), the original shape function of the EFGM satis®es the
reproducing conditions, expressed as

Xn
i�1

Ni�x�xk
i � xk, �k � 1, 2, . . . �: �20�

Since Eq. (20) holds at x � x1 and x � xn, we have

Xnÿ1
j�2

Nj�x1�xk
j � xk

1 ÿN1�x1�xk
1 ÿNn�x1 �xk

n,

Xnÿ1
j�2

Nj�xn�xk
j � xk

n ÿN1�xn�xk
1 ÿNn�xn�xk

n: �21�

Using Eqs. (17)±(21), we have the relationship expressed as

N�1�x�xk
1 �N�n�x�xk

n �
Xnÿ1
j�2

Mj�x�xk
j � N1�x�xk

1 �Nn�x�xk
n: �22�

To show the reproducing condition of the modi®ed shape function, we utilize Eq. (17) in the following
equation:

Xn
i�1

N�i �x�xk
i �

Xnÿ1
j�2

N�j �x�xk
j �N�1�x�xk

1 �N�n�x�xk
n

�
Xn
j�1

Nj�x�xk
j ÿN1�x�xk

1 ÿNn�x�xk
n �N�1�x�xk

1 �N�n�x�xk
n �

Xnÿ1
j�2

Mj�x�xk
j : �23�

Substituting Eq. (22) into Eq. (23) and using Eq. (20), we obtain
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Xn
i�1

N�i �x�xk
i �

Xn
j�1

Nj�x�xk
j � xk: �24�

The above equation shows that the reproducing condition of the present shape function is met.
It should be noted that boundary conditions are not always prescribed at both ends of the element.

When boundary conditions are prescribed at x � xk except the ends of the element, we should introduce
the physical value at x � xk: The way for deriving the displacement function with the physical value at
x � xk is exactly the same as that described above.

4. Flexible translational joint

It is a crucial point in multibody dynamic analysis to satisfy constraint conditions. The Lagrange
multiplier method has been introduced to account for the e�ect of kinematic constraints (see, for
example, Haug, 1989). This method leads to a mixed system of di�erential algebraic equations. Another
method for satisfying constraint conditions is to eliminate the dependent variables from the basic
equations, so that the resulting equations of motion are ordinary di�erential equations (ODEs). It is not
always possible to eliminate the dependent variables from the equations of motion. If the elimination is
accomplished, however, a well established integration scheme is available for integrating the ODEs. In
this paper, we eliminate the dependent variables from the equations of motion by using constraint
conditions. Therefore, the constraint conditions are always satis®ed.

Let us consider a ¯exible translational joint as shown in Fig. 3. We assume that point B of the beam
M slides along the beam axis of beam N without any frictions, and that the rotation at point B of the
beam M is not restricted. The convected coordinates along undeformed beams M and N are denoted by
xM and xN, respectively. Let dM and dN denote the displacement vectors at the beam axes associated
with the beams M and N, respectively. Then, the displacement vectors at the beam axes are expressed as

dM �
 Xl

i�1
N�i �xM�uMi

!
eM1 �

 Xl
i�1

N�i �xM �vMi
!

eM2 ,

dN �
 Xs

i�1
N�i �xN�uNi

!
eN1 �

 Xs
i�1

N�i �xN�vNi
!

eN2 , �25�

where eMa and eNa are the base vectors associated with the beams M and N, respectively, as shown in
Fig. 3. The notations uMi and vMi are nodal values associated with the base vectors eM1 and eM2 ,

Fig. 3. Base vectors and coordinate systems for translational joint.
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respectively, and uNi and vNi nodal values associated with the base vectors eN1 and eN2 , respectively. The
notations l and s denote the number of nodes for the beams M and N, respectively. It should be noted
that uM1 , vM1 , uMl , vMl , uN1 , v

N
1 , u

N
s and vNs are the physical values or the displacement components at each

node.
Let xN

B be the coordinate of point B along the beam N at time t = 0 as shown in Fig. 4, in which the
dotted lines denote the initial con®guration and the solid lines the deformed one. At time t � T, the
coordinate of point B along the beam N may be denoted by xN

B � xB, where xB is a variable. The
constraint condition such that point B of the beam M should lie on the beam N may be written as

dM
B � xBeN1 � dN

B , �26�
where the displacement vectors dM

B and dN
B are expressed in terms of components by

dM
B �

 Xl
i�1

N�i
ÿ
xM
B

�
uMi

!
eM1 �

 Xl
i�1

N�i
ÿ
xM
B

�
vMi

!
eM2 , �27�

dN
B �

 Xs
i�1

N�i
ÿ
xN
B � xB

�
uNi

!
eN1 �

 Xs
i�1

N�i
ÿ
xN
B � xB

�
vNi

!
eN2 , �28�

where xM
B is the initial coordinate of point B along the beam M.

At initial state as shown in Fig. 3, the relationships between the base vectors eMa and eNa are written as�
eM1
eM2

�
�
�

cos a ÿsin a
sin a cos a

��
eN1
eN2

�
: �29�

By substituting Eqs. (27)±(29) into Eq. (26), we have the following relationships: Xl

i�1
N�i
ÿ
xM
B

�
uMi

!
cos a�

 Xl
i�1

N�i
ÿ
xM
B

�
vMi

!
sin a � xB �

Xs
i�1

N�i
ÿ
xN
B � xB

�
uNi ,

ÿ
 Xl

i�1
N�i
ÿ
xM
B

�
uMi

!
sin a�

 Xl
i�1

N�i
ÿ
xM
B

�
vMi

!
cos a �

Xs
i�1

N�i
ÿ
xN
B � xB

�
vNi : �30�

Since the present displacement function possesses the physical values at both ends of beam, we have
uMl � uMB and vMl � vMB :

Solving Eq. (30) for uMB and vMB leads to

Fig. 4. Initial and deformed con®gurations for translational joint.
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uMB �
1

N�l
ÿ
xM
B

�"xBcos aÿ
Xlÿ1
i�1

N�i
ÿ
xM
B

�
uMi �

Xs
i�1

N�i
ÿ
xN
B � xB

�
uNi cos aÿ

Xs
i�1

N�i
ÿ
xN
B � xB

�
vNi sin a

#
, �31�

vMB �
1

N�l
ÿ
xM
B

�"xBsin aÿ
Xlÿ1
i�1

N�i
ÿ
xM
B

�
vMi �

Xs
i�1

N�i
ÿ
xN
B � xB

�
vNi cos a�

Xs
i�1

N�i
ÿ
xN
B � xB

�
uNi sin a

#
: �32�

The above equations show that the displacement components uMB and vMB are expressed in terms of xB
and the nodal values of the beams M and N. The constraint condition, expressed by Eq. (26), is satis®ed
by eliminating uMB and vMB from the displacement functions. Introducing Eqs. (31) and (32) into the
displacement functions of the beam M, we obtain the following expression:

uM �
Xlÿ1
i�1

N�i �xM �uMi �N�l �xM�uMl ,

�
Xlÿ1
i�1

Aiu
M
i �

Xn
i�1

Bi

ÿ
uNi cos aÿ vNi sin a

�� N�l �xM �
N�l
ÿ
xM
B

�xBcos a, �33�

vM �
Xlÿ1
i�1

N�i �xM �vMi �N�l �xM�vMl ,

�
Xlÿ1
i�1

Aiv
M
i �

Xn
i�1

Bi

ÿ
vNi cos a� uNi sin a

�� N�l �xM �
N�l
ÿ
xM
B

�xBsin a, �34�

where

Ai � N�i �xM � ÿ N�l �xM�
N�l
ÿ
xM
B

�N�i ÿxM
B

�
,

Bi � N�l �xM�
N�l
ÿ
xM
B

�N�i ÿxN
B � xB

�
: �35�

In Timoshenko's beam theory, independent variables are translational and rotational ones. The
displacement function for the rotation of the beam M remains unchanged since the rotation at point B
of the beam M is not restricted. The displacement functions for the beam N remain also unchanged.
Therefore, the displacement functions for the rotation fM and those for the beam N are expressed as

fM �
Xl
i�1

N�i �xM �fM
i ,

uN �
Xs
i�1

N�i �xN �uNi ,
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vN �
Xs
i�1

N�i �xN �vNi ,

fN �
Xs
i�1

N�i �xN �fN
i : �36�

5. Formulation

In this paper, we assume that there exists no damping forces. Then, the equations of motion for the
present system are derived with the help of Hamilton's principle which states that

dH � 0,

H �
�t2
t1

�TÿPs ÿPf � dt, �37�

where H denotes the total potential energy, T the kinetic energy, Ps the strain energy and Pf the
potential energy of external forces. According to Iura and Atluri (1988, 1995 and Reissner, 1981), the
kinetic energy and the strain energy for Timoshenko's beam are expressed as

T �
�t2
t1

1

2

h
Ar� _u�2�Ar� _v�2�Ir

ÿ
_f
�2i

dt, �38�

Ps �
�L
0

�
EA

2
�E�2�EI

2
�k�2�GAs

2
�g�2

�
dx, �39�

where

Ar �
�
m dA, Ir �

�
my 2 dA, �40�

and m is the mass density per unit volume, E the axial strain, k the curvature, g the shearing strain, EA
the stretch rigidity, EI the bending rigidity, GAs the shearing rigidity and L the undeformed beam
length. The relationships between displacements and strains are written as (Iura and Atluri, 1988, 1989)

E � ÿu 0 � cos f0

�
cos f� ÿv 0 � sin f0

�
sin fÿ 1,

k � f 0,

g � ÿv 0 � sin f0

�
cos fÿ ÿu 0 � cos f0

�
sin f, �41�

where � � 0 � d� �=dx, and f0 is the initial angle between the beam axis and the coordinate axis. It should
be noted that the above basic equations for Timoshenko's beam have been derived on the basis of a
geometrically exact beam theory.

By substituting the displacement functions into Eq. (41) and using Eqs. (37)±(39), we have the
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following discretized equations of motion:

�M �
�

ÈD
	
�
�
C�D�

��
ÇD
	
�
�
K�D�

	
� �f 	, �42�

where �M� is the mass matrix,�C�D��f ÇDg and fK�D�g are the internal force vectors and ff g is the external
force vector, and

fDg �
n
uM1 , vM1 , fM

1 , . . . ,uMlÿ1, v
M
lÿ1, f

M
lÿ1, f

M
l , xB, u

N
1 , v

N
1 , f

N
1 , . . . ,uNs , v

N
s , f

N
s

oT

: �43�

With the introduction of new variable Z, Eq. (42) is transformed into simultaneous ®rst-order ODE,
expressed as�

ÇD
	
� fZg,

�M �
�

ÇZ
	
� �f 	ÿ �C�D��fZg ÿ �K�D�	: �44�

It should be noted that the mass matrix �M� is a constant matrix. It is enough, therefore, for each
problem to calculate �M�ÿ1 only once and store those values in a memory disk. At each time step, �M�ÿ1
is recovered from the memory disk.

The above ODEs are integrated by the fourth-order Runge±Kutta method under boundary and initial
conditions. The way for imposing essential boundary conditions is exactly the same as that of the FEM.

6. Numerical examples

In this chapter, we consider three problems. First problem is a linear static cantilever beam, in which
the penalty method, the Lagrange multiplier method and the present method are used for imposing
essential boundary conditions. Second problem is the ¯ying spaghetti problem (Simo and Vu-Quoc,
1986), where the present result is compared with those obtained by the FEM. Last problem is a ¯exible
translational joint.

Throughout the present examples in the EFGM, we employ the linear basis function expressed as

pT�x� � �1, x�: �45�
A weighting function used herein is expressed by Eq. (12).

6.1. Cantilever beam

We consider a cantilever beam subjected to a uniformly distributed load p � 1 (see Fig. 5). The
following parameters are used for the present problem: Young's modulus E � 2� 106; shearing modulus

Fig. 5. Cantilever beam.
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G � 1� 106; beam length L = 1000; width B = 1.2; height H = 10; modi®ed area As � A � 12: The
number of nodes and cells used are 11 and 10, respectively. Regular meshes for nodes and cells are used.
Three-point Gauss integration rule is used for each cell. When the penalty method and the Lagrange
multiplier method are used for imposing essential boundary conditions, we use the shape function
de®ned by Eq. (10). The displacements w at the free end of the beam are shown in Fig. 6. The abscissa
is taken as the ratio r/L where r is the radius of the support. The ordinate shows the ratio w=wex where
wex is the exact solution of Bernoulli±Euler's beam theory. As shown in Fig. 6, the numerical solutions
obtained converge with increased ratio r/L. The penalty method and the present one give almost same
numerical results. The Lagrange multiplier method leads to the poor numerical results compared with
other two methods.

Fig. 6. Tip displacements of cantilever beam.

Fig. 7. Problem data for ¯ying spaghetti.
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6.2. Flying spaghetti problem

This problem has been solved ®rst by Simo and Vu-Quoc (1986) and later by Iura and Atluri
(1988), in which the FEM has been used. The beam is subjected to force and torque applied
simultaneously at one end of the beam. The problem data are given in Fig. 7. The number of nodes
and cells in the EFGM are 11 and 10, respectively. Regular meshes for nodes and cells are used. The
radius of the support r is 5. Three-point and seven-point Gauss integration rules are used for each
cell. Time increment Dt for the integration scheme is 0.001. The sequence of the beam motion is
illustrated in Fig. 8, where numerical results obtained by the FEM and the EFGM are shown. In this
example, there exists no signi®cant di�erences in numerical results between three-point and seven-
point Gauss integration rules. A good agreement between the present results and the FEM results has
been obtained.

Fig. 8. Sequence of beam motion.

Fig. 9. Problem data for translational joint.
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Fig. 10. Sequence of motion for ¯exible translational joint.
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6.3. Flexible translational joint

Let us consider a ¯exible translational joint as shown in Fig. 9. In this mechanism, we assume that no
friction forces exist. Therefore, point B and point D slide along the beam N and a rigid ground,
respectively, without any frictions. The problem data are shown in Fig. 9. A torque is applied at point A
of the beam M continuously. The number of nodes in the beam M and the beam N are 5 and 9,
respectively. The number of cells in the beam M and the beam N are 4 and 8, respectively. Regular
meshes for nodes and cells are used for each beam. The radius of the support r for the beam M and the
beam N are 2 and 10, respectively. Three-point Gauss integration rules is used for each cell. Time
increment Dt for the integration scheme is 0.001.

When point B approaches one end of the beam N, a contact will occur between point B and the beam
N. In this paper, when a distance between point B and one end of the beam N is less than LN=20,000,
an elastic spring is inserted in the end of the beam N. A spring constant k is assumed to be 1� 109. We
con®rmed that no distinct di�erences in numerical results were observed when a spring constant k was
taken from 1� 108 to 1� 1011.

The following boundary conditions are used in this system:

uM � vM � 0 at xM � 0 �Point A�

vN � 0 at xN � LN �Point D�
As initial conditions, each point has the following coordinates in the system of ®xed coordinates X and
Y:

Point A � f0,0g, Point B � f4,0g, Point C � f0,0g, Point D � f20,0g
The initial velocity of the system is assumed to be zero.

The sequence of the mechanism is shown in Fig. 10. A ®rst contact between point B and the beam N
were observed at t � 1:35: After the ®rst contact, the beam M was pushed back. Since the torque was
applied continuously at point A, second contact was observed at t � 2:05: After the second contact, the
beam M was pushed back once again. Since the bending rigidities were assumed to be small, large
deformations were observed. This result shows the applicability of the meshless method into a ¯exible
translational joint analysis.

7. Conclusions

The EFGM has been employed for an analysis of ¯exible translational joint. The modi®ed shape
function was proposed in which both ends of the element have the physical values. The reproducing
condition or completeness of the modi®ed shape functions was proved. The advantage of using the
present shape function is that the essential boundary conditions are imposed by the same way as that of
the FEM. Numerical examples show the applicability of the present method into a ¯exible multibody
dynamic analysis.
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